Calibrating word problems of groups via the complexity of equivalence relations

André Nies Joint work with Andrea Sorbi

Equivalences, numberings, reducibilities, Udine,

1 / 25

Definition of computable reducibility and universality

Definition

Given two equivalence relations R, S on \mathbb{N} , we say that R is computably reducible to S (notation: $R \leq S$) if there exists a computable function f such that, for every $x, y \in \mathbb{N}$,

 $x R y \Leftrightarrow f(x) S f(y).$

Definition

Let \mathcal{A} be a class of equivalence relations. An equivalence relation $R \in \mathcal{A}$ is called \mathcal{A} -universal if $S \leq R$ for every $S \in \mathcal{A}$.

Three results connecting eqrels and f.g. groups

(1) There is a finitely presented group with a word problem which is a uniformly effectively inseparable equivalence relation.

(2) There is a finitely generated group of computable permutations with a word problem which is a universal co-computably enumerable equivalence relation.

(3) Each c.e. truth-table degree contains the word problem of a finitely generated group of computable permutations.

Main reference for this talk: eponymous 2018 paper by Nies and Sorbi in Math. Struct. in Comp. Science [8].

Sample results on universal eqrels

- The isomorphism relation for various familiar classes of computable structures is Σ¹₁-universal: e.g. computable graphs (Fokina et al. 2012 [4]).
- 1-equivalence among c.e. sets is Σ⁰₃-universal. (Fokina, Friedman and Nies 2012 [3]).
- Equality of functions Σ* → Σ* that are computable in quadratic time is a Π⁰₁-universal equivalence relation. The functions are described by Turing programs. Ianovski et al. 2014 [5, Theorem 3.5].
- In contrast, Ianovski et al. show that there is no $\prod_{n=1}^{0}$ -universal equivalence relation for n > 1.
- In fact, for n > 1, each Π_n^0 equivalence relation R there is a Δ_n^0 relation S such that $S \not\leq R$.

In the talk, we will discuss four results that relate

 Σ_1^0 universality and Π_1^0 universality for equivalence relations

 to

word problems and isomorphism problems for finitely generated groups.

5 / 25

A little-known construction by C.F. Miller III

Write F_X for the free group on generators in X.

Some notation

- Given a group $G = \langle X; R \rangle = F_X / N$ where N is the normal closure of the set of relators R, the word problem is $\{(s,t): st^{-1} \in N\}$.
- Write $=_G$ for this equivalence relation on F_X .

Theorem (C.F. Miller III, Group theoretic dec. problems, 1971[6])

- (a) Given a Σ_1^0 eqrel E, one can effectively build a f.p. group $G_E = \langle X; R \rangle$, and a computable sequence of words $(w_i)_{i \in \mathbb{N}}$ in F_X such that $i \in k \Leftrightarrow w_i =_G w_k$.
- (b) Given a finite presentation $\langle X; R \rangle$ of a group G one can effectively find a computable family $(H_w^G)_{w \in F_X}$ of f.p. groups such that $v =_G w \Leftrightarrow H_v^G \cong H_w^G$ for all $v, w \in F_X$.

Finitely presented groups and Σ_1^0 -universality

 Σ_1^0 -universal equivalence relations and

isomorphism of finitely presented groups

Corollary (to Miller's Theorem)

- (i) There exists a f.p. group G such that $=_G$ is a Σ_1^0 -universal eqrel.
- (ii) The isomorphism relation $\cong_{f.p.}$ between finite presentations of groups is a Σ_1^0 -universal eqrel.

Ianovski, Miller, Ng. and N. 2014 had asked (ii), not knowing that it had already been answered in the affirmative in [6].

Proof. Let E be a Σ_1^0 -universal eqrel. Then

- (i) by (a) of Miller's theorem, E is computably reducible to $=_{G_E}$, and thus $=_{G_E}$ is Σ_1^0 -universal;
- (ii) by (b) of Miller's theorem, $i E k \Leftrightarrow H^{G_E}_{w_i} \cong H^{G_E}_{w_k}$. This shows that *E* is computably reducible to $\cong_{f.p.}$. Hence $\cong_{f.p.}$ is Σ^0_1 -universal.

8 / 25

A further question on $\cong_{f.p.}$ answered

- N. and Sorbi 2018 asked whether each pair of distinct equivalence classes of ≅_{f.p.} is recursively inseparable.
- A negative answer was observed by Maurice Chiodo.

 $G_{ab} = G/G'$ is the largest abelian quotient of a group G.

Observation by M. Chiodo, See Lyndon/Schupp, Logic Blog 2017, p. 18.

Let \mathcal{A} be the set of finite presentations of groups G such that $G_{ab} \cong \mathbb{Z}$. This set \mathcal{A} is recursive.

 \mathcal{A} contains all the presentations of \mathbb{Z} and no presentation of $\mathbb{Z} \times \mathbb{Z}$. So these two equivalence classes can be separated by a recursive set.

9 / 25

A better version of the N. and Sorbi 2018 question

A group G is called **perfect** if G' = G. The finite presentations of perfect groups can be listed effectively. So there is a computable function P such that $P(n) = \langle X_n, R_n \rangle$ is a list of the finite presentations of perfect groups.

Let $E_P = \{ \langle n, k \rangle : P(n) \cong P(k) \}$. Are any two equivalence classes of E_P recursively inseparable? If so, is E_P uniformly e.i.?

If Q is another such listing then E_P and E_Q are recursively isomorphic. So the answers don't depend on the choice of P. (Use a back and forth argument, together with the fact that $\cong_{\text{f.p.}}$ is Σ_1^0 .) If E_P is u.e.i. then it is already recursively isomorphic to \sim_{PA} . This is because E_P has a "strong diagonal function", i.e. a computable function g taking finite sets $D \subseteq \mathbb{N}$ as arguments such that $g(D) \notin [D]_E$ for each D.

10 / 25

A f.p. group with u.e.i. word problem

Definition (See Soare 89, Exercise II.4.5)

Disjoint c.e. sets A, B are effectively inseparable if for each disjoint pair X, Y of c.e. sets, there is a 1-1 computable function f such that $f(X) \subseteq A$ and $f(Y) \subseteq B$. It suffices to ask this for the pair $X = \{e: \phi_e(e) = 0\}, Y = \{e: \phi_e(e) = 1\}.$

Theorem (First result in N. and Sorbi, 2018)

There is a finitely presented group H such that each pair of distinct equivalence classes of its word problem $=_H$ is effectively inseparable, uniformly in terms of elements of F_n representing the equivalence classes.

Note that the word problem of H is a Σ_1^0 -universal eqrel by Andrews et al. 2014 [1].

Theorem (Recall, f.p. group with u.e.i. WP)

There is a finitely presented group H such that each pair of distinct equivalence classes of its word problem $=_D$ is effectively inseparable in a uniform way.

The proof has three main ingredients. (See the paper for detail.) 1. Lemma. Let $G = \langle X; R \rangle$ be a given f.p. group. Suppose $([1]_G, [w]_G)$ is e.i. where $w \in F_X$. Let $N = \operatorname{Ncl}_G(w)$. Then, if $s, t \in N$ such that $s \neq_G t$, the pair $([s]_G, [t]_G)$ is e.i. uniformly in s, t.

2. A method of C.F. Miller builds a nontrivial f.p. group so that all its nontrivial quotients have an undecidable WP. This is done by encoding an e.i. pair into the word problem.

3. A construction from Lyndon/Schupp IV.3.5. embeds each countable group into a f.g. simple group.

13 / 25

F.g. subgroups of $S_{\rm rec}$

Let α, β of two permutations on some set W. Then $\alpha\beta$ denotes the permutation such that $\alpha\beta(s) = \beta(\alpha(s))$ where $s \in W$. Let S_{rec} denote the group of computable permutations of \mathbb{N} .

Fact

Suppose G is a f.g. subgroup of S_{rec} . Then the WP of G is Π_1^0 .

Fact

Suppose that a f.g. group G has decidable WP. Then G is isomorphic to a subgroup of S_{rec} . (Use the right translation action of the generators.)

In contrast, Morozov 2000 [7] showed that there is a two-generator group with Π_1^0 word problem that is not embeddable into the group of computable permutations of \mathbb{N} .

and word problems

14 / 25

Downwd closed classes of finitely generated groups

In the diagram below, arrows denote proper inclusions. All its classes of f.g. groups are closed under taking subgroups.

Automorphisms of negative numerations

Let $\nu \colon \mathbb{N} \to M$ be a numeration. Call a permutation ρ on M computable if there are computable $f, g \colon \mathbb{N} \to \mathbb{N}$ such that

 $\rho \circ \nu = \nu \circ f$ and $\rho^{-1} \circ \nu = \nu \circ g$.

I.e., f "names" ρ and g "names" ρ^{-1} w.r.t. ν . These permutations form a group denoted $S_{\text{rec}}(\nu)$.

FACT. If ν is a negative numeration (i.e. its kernel is Π_1^0) then each f.g. subgroup G of $S_{\rm rec}(\nu)$ has Π_1^0 word problem.

FACT. There is a single negative numeration ν such that each f.g. group with Π_1^0 WP occurs as a subgroup of $S_{\rm rec}(\nu)$.

To verify the second fact, one combines Morozov 2000 [7] (where the negative numeration depends on G) with the construction of a Π_1^0 universal eqrel in Ianovski et al. 2014 [5].

Theorem (N. and Sorbi 2018, second result)

There is a finitely generated group of computable permutations of \mathbb{N} with word problem a Π_1^0 -universal equivalence relation.

To prove this, let E be a Π_1^0 -universal equivalence relation (Ianovski et al. [5]). By [5, Prop. 3.1] there is a computable function f such that

$$x E y \Leftrightarrow (\forall n)[f(x, n) = f(y, n)]$$

The construction of f shows that $f(x, n) \leq x$ for each x, n.

18 / 25

Basic setting for the proof

Fix a computable bijection $\langle \cdot, \cdot \rangle \colon \mathbb{Z} \times \mathbb{N} \to \mathbb{N}$. The domain of our computable permutations is a disjoint union of pairs of "columns"

$$C_x^i = \{2x+i\} \times \mathbb{N}$$

where i = 0, 1 and $x \in \mathbb{Z}$ for the rest of this proof. The permutation σ shifts C_x^i to C_{x+1}^i :

 $\sigma(\langle 2x+i,n\rangle) = \langle 2x+2+i,n\rangle.$

The permutation τ exchanges C_0^i with C_0^{1-i} and is the identity elsewhere:

$$\tau(\langle i, n \rangle) = \langle 1 - i, n \rangle$$
 and $\tau(\langle k, n \rangle) = \langle k, n \rangle$ if $k \neq 0, 1$.

The permutation α encoding fRecall that E is Π^0_1 universal equal, and f is computable, s.t.

 $x E y \Leftrightarrow (\forall n) [f(x, n) = f(y, n)].$

The permutation α codes f in the sense that there exists a fixed computable sequence $(t_x)_{x\in\mathbb{N}}$ of terms in the free group generated by the symbols α, σ, τ , such that,

letting $G = \langle \alpha, \sigma, \tau \rangle \leq S_{\text{rec}}$, for each $x, y \in \mathbb{N}$ we have

$$\forall n \left[f(x,n) = f(y,n) \right] \Leftrightarrow t_x =_G t_y.$$
(1)

For each x, n,

- α has a cycle of length f(x, n) + 1 in the interval [n(x+1), n(x+1) + x] of C_x^0
- α is the identity on the remaining columns.

Defining terms $t_x(\alpha, \sigma, \tau)$

For $x \in \mathbb{N}$ we let $t_x = \sigma^x \alpha \sigma^{-x} \tau \sigma^x \alpha^{-1} \sigma^{-x}$.

- the permutation $t_x(\alpha, \sigma, \tau)$ only retains the encoding of the values f(x, n), and erases all other information:
- it moves this information to the pair of columns C_0^0, C_0^1 . In this way we can compare the values f(x, n) and f(y, n) applying t_x and t_y to α, σ, τ :

$$\forall n \left[f(x,n) = f(y,n) \right] \iff t_x = t_y$$

In more detail, et α_x be the permutation given by $\alpha(\langle 2x, w \rangle) = \langle 2x, \alpha_x(w) \rangle$. We obtain

$$t_x(\langle u, w \rangle) = \begin{cases} \langle u, w \rangle, & \text{if } u \neq 0, 1, \\ \langle 1, \alpha_x(w) \rangle, & \text{if } u = 0, \\ \langle 0, (\alpha_x)^{-1}(w) \rangle, & \text{if } u = 1. \end{cases}$$

Analog of Collins' result for Π_1^0 groups

Let us call a permutation σ fully primitive recursive if

both σ and σ^{-1} are primitive recursive.

The fully primitive recursive permutations form a group.

Theorem

Given an r.e. set S, there is a triple of fully primitive recursive permutations such that the group G generated by them has word problem truth table equivalent to S.

We prove this by modifying the construction of computable permutations α, σ, τ for our previous result.

Background for the final result in N. and Sorbi 2018

For the rest of the talk, the "word problem" of a group $G = F_n/N$ is meant classically as the equivalence class of the identity element, i.e. N.

- Collins 1971 [2] showed that each r.e. truth table degree contains the word problem of a finitely presented group, extending the work of Fridman, Clapham, Boone and others showing this for c.e. Turing degrees.
- In contrast, Ziegler 1976 [9] constructed an r.e. bounded truth-table degree that does not contain the word problem of a finitely presented group.

Open questions

1. Is isomorphism of f.p. perfect groups an u.e.i. equivalence relation?

2. It there a f.g. group with u.e.i. word problem that also has a strong diagonal function? I.e., can the WP be recursively isomorphic to \sim_{PA} ?

The third question connects Π_1^0 universality with a different area. It was asked by Ianovski, Miller, Ng and N. 2014 [5] and remains open to my knowledge.

3. Is isomorphism of finite-automata presentable equivalence relations Π_1^0 -universal?

21 / 25

	 U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro, and A. Sorbi. Universal computably enumerable equivalence relations. J. Symbolic Logic, 79(1):60-88, March 2014.
	D. J. Collins. Truth-table degrees and the Boone groups. Ann. of Math., 94(3):392–396, 1971.
	E. B. Fokina, S. D. Friedman, and A. Nies.
_	Equivalence relations that are Σ_3^0 complete for computable reducibility. volume LNCS 7456, pages 26–33, Berlin, Heidelberg, 2012. Springer-Verlag.
	E.B. Fokina, S.D. Friedman, V. Harizanov, J.F. Knight, C. Mc Coy, and A. Montalbán. Isomorphism relations on computable structures. J. Symbolic Logic, 77(1):122–132, 2012.
	E. Ianovski, R. Miller, K. M. Ng, and A. Nies. Complexity of equivalence relations and preorders from computability theory. J. Symbolic Logic, 79(3):859–881, 2014.
	 C. F. Miller III. Group-Theoretic Decision Problems and their Classification. Number 68 in Annals of Mathematical Studies. Princeton University Press, Princeton, New Jersey, 1971.
	A. S. Morozov. Once again on the Higman question. Algebra i logika, 39(2):134–144, 2000.
	A. Nies and A. Sorbi. Calibrating word problems of groups via the complexity of equivalence relations. Mathematical Structures in Computer Science, 28(3):457-471, 2018.
	M. Ziegler. Ein rekursiv aufzählbarer btt-Grad, der nicht zum Wortproblem einer Gruppe gehört. 25 / 25