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Definition of computable reducibility and

universality

Definition

Given two equivalence relations R, S on N, we say that R is
computably reducible to S (notation: R < S) if there exists a
computable function f such that, for every z,y € N,

Ry« f(z)S fy)

Definition

Let A be a class of equivalence relations. An equivalence relation
R € A is called A-universal if S < R for every S € A.
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Three results connecting eqrels and f.g. groups

(1) There is a finitely presented group with a word problem which
is a uniformly effectively inseparable equivalence relation.

(2) There is a finitely generated group of computable permutations
with a word problem which is a universal co-computably
enumerable equivalence relation.

(3) Each c.e. truth-table degree contains the word problem of a
finitely generated group of computable permutations.

Main reference for this talk: eponymous 2018 paper by Nies and
Sorbi in Math. Struct. in Comp. Science [8].
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Sample results on universal eqrels

m The isomorphism relation for various familiar classes of
computable structures is ¥}-universal: e.g. computable graphs
(Fokina et al. 2012 [4]).

m l-equivalence among c.e. sets is X3-universal. (Fokina,
Friedman and Nies 2012 [3]).

m Equality of functions ¥* — ¥* that are computable in
quadratic time is a I1{-universal equivalence relation. The
functions are described by Turing programs. lanovski et al.
2014 [5, Theorem 3.5].

m In contrast, Ianovski et al. show that there is no I12-universal
equivalence relation for n > 1.

m In fact, for n > 1, each T12 equivalence relation R there is a
AY relation S such that S £ R.
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In the talk, we will discuss four results that relate

»! universality and I1{ universality
for equivalence relations

to

word problems and isomorphism problems
for finitely generated groups.

5/ 25

A little-known construction by C.F. Miller III
Write Fx for the free group on generators in X.
Some notation
m Given a group G = (X; R) = Fx /N where N is the normal closure
of the set of relators R, the word problem is {(s,t): st~ € N}.

m Write =¢ for this equivalence relation on Fx.

Theorem (C.F. Miller III, Group theoretic dec. problems, 1971[6])

(a) Given a ¢ eqrel E, one can effectively build a f.p. group
Gr = (X; R), and a computable sequence of words (w;);ey in
Fx such that ¢ F k < w; =¢ wy,.

(b) Given a finite presentation (X; R) of a group G one can

effectively find a computable family (HS),er, of f.p. groups
such that v =¢ w & HE = HY for all v,w € Fy.
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>{-universal equivalence relations and

isomorphism of finitely presented groups
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Finitely presented groups and X{-universality
Corollary (to Miller’s Theorem )

(i) There exists a f.p. group G such that =¢ is a X{-universal
eqrel.

(ii) The isomorphism relation =, between finite presentations of
groups is a X{-universal eqrel.

Tanovski, Miller, Ng. and N. 2014 had asked (ii), not knowing that
it had already been answered in the affirmative in [6].
Proof. Let E be a X{-universal eqrel. Then

(i) by (a) of Miller’s theorem, £ is computably reducible to =¢,,, and
thus =¢,, is ¥{-universal;

(i) by (b) of Miller’s theorem, i E k < HG? = HSF. This shows that
E is computably reducible to =, . Hence =y, is E(f—universal.
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A further question on =¢, answered

m N. and Sorbi 2018 asked whether each pair of distinct
equivalence classes of =, is recursively inseparable.

m A negative answer was observed by Maurice Chiodo.

Ga = G/G' is the largest abelian quotient of a group G.

Let A be the set of finite presentations of groups G such that
Gy = 7. This set A is recursive.

A contains all the presentations of Z and no presentation of Z x Z.
So these two equivalence classes can be separated by a recursive set.
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A better version of the N. and Sorbi 2018 question

A group G is called perfect if G’ = G. The finite presentations of
perfect groups can be listed effectively. So there is a computable
function P such that P(n) = (X, R,) is a list of the finite
presentations of perfect groups.

Let Ep = {(n,k): P(n) = P(k)}. Are any two equivalence classes
of Ep recursively inseparable? If so, is E'p uniformly e.i.?

If @ is another such listing then Ep and Eg are recursively isomorphic.
So the answers don’t depend on the choice of P. (Use a back and forth
argument, together with the fact that = is E?.)

If Ep is u.e.i. then it is already recursively isomorphic to ~p4.

This is because Ep has a “strong diagonal function”, i.e.

a computable function g taking finite sets D C N as arguments such
that g(D) & [D]g for each D.
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A f.p. group with u.e.i. word problem

Disjoint c.e. sets A, B are effectively inseparable if for each disjoint
pair X,Y of c.e. sets, there is a 1-1 computable function f such
that f(X) C A and f(Y) C B. It suffices to ask this for the pair

X = {e: ¢e(e) = 0}, Y = {e: gue) = 1},

There is a finitely presented group H such that each pair of
distinct equivalence classes of its word problem = is effectively
inseparable, uniformly in terms of elements of F, representing the
equivalence classes.

Note that the word problem of H is a ¥%-universal eqrel by
Andrews et al. 2014 [1].
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There is a finitely presented group H such that each pair of
distinct equivalence classes of its word problem =p, is effectively
inseparable in a uniform way.

The proof has three main ingredients. (See the paper for detail.)
1. Lemma. Let G = (X; R) be a given f.p. group. Suppose

(1]e, [w]e) is ed. where w € Fx. Let N = Nelg(w).

Then, if s,t € N such that s #¢ t, the pair ([s]g, [t]¢) is e.i.
uniformly in s, t.

2. A method of C.F. Miller builds a nontrivial f.p. group so that all
its nontrivial quotients have an undecidable WP. This is done by
encoding an e.i. pair into the word problem.

3. A construction from Lyndon/Schupp IV.3.5. embeds each
countable group into a f.g. simple group.
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F.g. subgroups of Siec
Let a, § of two permutations on some set W. Then af denotes the

permutation such that a3(s) = f(a(s)) where s € W.
Let Siec denote the group of computable permutations of N.

Suppose G is a f.g. subgroup of S,... Then the WP of G is TIY.

Suppose that a f.g. group GG has decidable WP. Then G is
isomorphic to a subgroup of Si... (Use the right translation action
of the generators.)

In contrast, Morozov 2000 [7] showed that there is a two-generator
group with ITY word problem that is not embeddable into the group

of computable permutations of N.
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Downwd closed classes of finitely generated groups

In the diagram below, arrows denote proper inclusions. All its
classes of f.g. groups are closed under taking subgroups.

119 word problem

T

subgroup of Siec

/

Computable WP

%9 word problem
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Automorphisms of negative numerations

Let v: N — M be a numeration. Call a permutation p on M
computable if there are computable f,g: N — N such that

pov=vofand plov=vog.
Le., f “names” p and g “names” p~! w.r.t. v. These permutations

form a group denoted Spec(V).

FACT. If v is a negative numeration (i.e. its kernel is I1?) then each
f.g. subgroup G of S...(v) has I1{ word problem.

FACT. There is a single negative numeration v such that each f.g.
group with ITY WP occurs as a subgroup of Siec(v).

To verify the second fact, one combines Morozov 2000 [7] (where
the negative numeration depends on G) with the construction of a

I19 universal eqrel in Tanovski et al. 2014 [5]. -
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Basic setting for the proof

Fix a computable bijection (-, -): Z x N — N. The domain of our
computable permutations is a disjoint union of pairs of “columns”

C! = {2z +14} x N,

where ¢ = 0,1 and x € Z for the rest of this proof.
The permutation o shifts C to C? ;-

o((2x +1i,n)) = 2z + 2+ i,n).

The permutation 7 exchanges C} with Cj " and is the identity
elsewhere:

7({(i,n)) = (1 —i,n) and 7({k,n)) = (k,n) if £k #0, 1.
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Theorem (N. and Sorbi 2018, second result)

There is a finitely generated group of computable permutations
of N with word problem a I1{-universal equivalence relation.

To prove this, let £ be a I1%-universal equivalence relation
(Ianovski et al. [5]). By [5, Prop. 3.1] there is a computable
function f such that

v By & (Vn)[f(z,n) = fly,n)].

The construction of f shows that f(x,n) < z for each z,n.
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The permutation a encoding f

Recall that E is I1{ universal eqrel, and f is computable, s.t.

z Ey e (Yn)lf(z,n) = f(y,n)].

The permutation « codes f in the sense that there exists a fixed
computable sequence (t,).en of terms in the free group generated
by the symbols «, g, 7, such that,

letting G = («, 0, 7) < Spec, for each z,y € N we have

Vn [f(x,n) = f(yvn)] <tz =¢ ty‘ (1)
For each z,n,
m « has a cycle of length f(z,n)+ 1 in the interval
[n(x +1),n(x + 1) + x] of CY

m « is the identity on the remaining columns.
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Defining terms t,(a, o, 7)

1 aB

For v € N we let t, = oo™ 7 0 "0~ *.

m the permutation ¢,(«, o, 7) only retains the encoding of the
values f(xz,n), and erases all other information:

m it moves this information to the pair of columns C§, Cjj. In
this way we can compare the values f(x,n) and f(y,n)
applying t, and t, to o, 0, 7:

In more detail, et a, be the permutation given by
a((2z,w)) = (2z, a,(w)). We obtain
(u, w), if u # 0,1,
te((u,w)) = ¢ (1, ap(w)), if u=0,
(0, (@) (w)), ifu=1.
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Analog of Collins’ result for II) groups

Let us call a permutation o fully primitive recursive if

both ¢ and ¢! are primitive recursive.
The fully primitive recursive permutations form a group.
Theorem

Given an r.e. set S, there is a triple of fully primitive recursive
permutations such that the group G generated by them has word
problem truth table equivalent to S.

We prove this by modifying the construction of computable
permutations «, o, 7 for our previous result.
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Background for the final result in N. and Sorbi
2018

For the rest of the talk, the “word problem” of a group G = F,,/N
is meant classically as the equivalence class of the identity element,
ie. N.

m Collins 1971 [2] showed that each r.e. truth table degree
contains the word problem of a finitely presented group,
extending the work of Fridman, Clapham, Boone and others
showing this for c.e. Turing degrees.

m In contrast, Ziegler 1976 [9] constructed an r.e. bounded
truth-table degree that does not contain the word problem of a
finitely presented group.
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Open questions

1. Is isomorphism of f.p. perfect groups an u.e.i. equivalence
relation?

2. It there a f.g. group with u.e.i. word problem that also has a
strong diagonal function? IL.e., can the WP be recursively
isomorphic to ~p?

The third question connects I19 universality with a different area.
It was asked by lanovski, Miller, Ng and N. 2014 [5] and remains
open to my knowledge.

3. Is isomorphism of finite-automata presentable equivalence
relations IT%-universal?
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